Friction-Sensing Retroreflector Array Patches (FRAP), Phase I

Completed Technology Project (2008 - 2008)

Project Introduction

Research Support Instruments, Inc. (RSI) proposes to develop the Friction-Sensing Retroreflector Array Patches (FRAP), a technology that will measure the shear stress distribution on aerodynamic surfaces in ground test facilities with high resolution, sensitivity, and bandwidth. Unlike the oil-film interference method, FRAP patches will not be thinned as a function of time during a test. No knowledge of the streamlines of the flow will be needed in order to calculate the local stress distribution; this will avoid the tracers needed with the oil-film interference approach. Flexible patches of FRAP arrays, inexpensive due to simple, mass-production-compatible microfabrication techniques, will be interrogated using a light source and camera. FRAP will be independent of the flow species and applied as a very thin, flexible, adhesive material. The Phase I goals will be to design sensors, develop a microfabrication technique and use it to fabricate prototype units, demonstrate feasibility, and select the most promising design for Phase II development. In Phase II, the prototype units will be field-demonstrated at NASA facilities, with manufacturing issues and realistic operating conditions addressed. The result will be a product that will address a critical NASA instrumentation need.

Primary U.S. Work Locations and Key Partners

Friction-Sensing Retroreflector Array Patches (FRAP), Phase I

Table of Contents

Project Introduction		
Primary U.S. Work Locations		
and Key Partners	1	
Organizational Responsibility		
Project Management		
Technology Areas	2	

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Center / Facility:

Glenn Research Center (GRC)

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Small Business Innovation Research/Small Business Tech Transfer

Friction-Sensing Retroreflector Array Patches (FRAP), Phase I

Completed Technology Project (2008 - 2008)

Organizations Performing Work	Role	Туре	Location
Glenn Research Center(GRC)	Lead Organization	NASA Center	Cleveland, Ohio
Research Support Instruments, Inc.	Supporting Organization	Industry	Lanham, Maryland

Primary U.S. Work Locations	
Maryland	Ohio

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Principal Investigator:

Jemma F Kline

Technology Areas

Primary:

- TX12 Materials, Structures, Mechanical Systems, and Manufacturing
 - └ TX12.1 Materials
 - ☐ TX12.1.3 Flexible Material Systems

